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             Resuscitation promoting factor E (RpfE) proteins in Mycobacterium 

tuberculosis (M. tuberculosis) may be recognized by the host immune system 

owing to their secretory nature. In this study, the RpfE protein was purified 

using DEAE–Sepharose column chromatography from M. tuberculosis H37Rv 

extracellular proteins. An upregulated production of gamma interferon (IFN- 

γ), interleukin-10 (IL-10) and IL-12 by splenocytes suggest T cell proliferation 

stimulated by purified RpfE protein. The present findings imply that the RpfE 

protein produced extracellularly in M. tuberculosis H37Rv can be used as a 

viable subunit vaccine candidate. 

                                INTRODUCTION 

               It is estimated that one-quarter of the world's population suffers latent tuberculosis 

infection, globally in 2018 (Cohen et al., 2019; Dara et al., 2020). Each year, around 1% of the 

population contracts a new infection (Adigun and Singh 2021). In 2020, it is anticipated that 10 

million people would have active tuberculosis, resulting in 1.5 million deaths, making it the 

second-highest cause of death from an infectious disease after COVID-19 (Chakaya et al., 

2021). 

            An effective vaccine paucity, the microbial resistance in the pathogen, and the fatal 

interaction of co-infection with HIV are the major causes of the present epidemic (Nunn et al., 

2005). For decades, Mycobacterium bovis (M. bovis) bacillus Calmette-Guérin (BCG), an 

inactivated M. bovis strain, has been the solely approved TB vaccine (Barreto et al., 2014; 

Brandt et al., 2002). The currently available vaccine is effective against juvenile forms of 

tuberculosis (Trunz et al., 2006), however, it fails to prevent adult pulmonary symptoms of the 

disease (Herzmann et al., 2014). Furthermore, BCG vaccination is not recommended for HIV-

positive people since BCG injection might induce fatal infections in immunocompromised 

people (Enserink 2007; Hesseling et al., 2009). For the last five decades, approximately 200 

vaccine candidates have been in various animal models of primary tuberculosis (Franco and 

Peri 2021; Zhu et al., 2018). 

           Recombinant BCG strains, DNA-based vaccinations, live attenuated M. tuberculosis 

vaccines, and subunit vaccines along with new adjuvants have shown efficacy in preclinical 

animal models (Ahsan 2015; Franco and Peri 2021; Zar and Udwadia 2013).  
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              Many of these vaccinations are 

now being investigated in human clinical 

trials, and many more vaccine formulations 

are expected to enter clinical trials soon 

(Sable et al., 2019). As a result, new or 

improved vaccinations are urgently needed 

to contain the infectious spread. 

              Resuscitation-promoting factor 

(Rpf) possessing autocrine and paracrine 

signaling effects is essential for the latent 

cell activation (Commandeur et al., 2011; 

Rosser et al., 2017). Rpf can activate 

dormant M. luteus cultures and significantly 

raise the viable cell count and cell growth 

(Mukamolova et al., 2002; S Kaprelyants et 

al., 2012). Genome sequencing shows the 

presence of similar genes in M. leprae, M. 

TB, M. bovis, Streptomyces spp., and 

Corynebacterium glutamicum 

(Mukamolova et al., 1998).  

            M. tuberculosis Rpf-like proteins 

boost the development of M. bovis BCG 

extended-stationary-phase cultures (Gupta 

et al., 2010). These findings imply that Rpf 

proteins can impact mycobacteria growth 

(Cohen-Gonsaud et al., 2004). Revival 

inability of bacteria having numerous rpf 

gene deletions revealed the relevance of M. 

tuberculosis Rpf-like proteins in 

resuscitation (Downing et al., 2005). 

Protein sequence analysis has shown that 

many of them are secreted, and all five Rpfs 

have extracytoplasmic properties (Sassetti 

et al., 2003), making them possible targets 

for identification by the host immune 

system during the reactivation stage of the 

illness. 

            As a result, these proteins have the 

potential to be used as innovative diagnostic 

reagents and subunit vaccine candidates in 

the fight against tuberculosis. The present 

study elucidated the production, 

purification and characterization of secreted 

protein RpfE and its effect on splenocytes. 

MATERIALS AND METHODS 

Bacterial Strain:  

            M. tuberculosis H37Rv (ATCC-

27294) (2x109 cfu/ml) was cultured in  

Sauton medium with 0.2 percent glycerol, 

0.05 percent Tween 80, and 10% oleic 

albumin dextrose catalase (OADC) until the 

optical density at 600 nm was reached. 

T- cells Culture:  

           Mouse splenocytes seeded at 5x10 

cells per well were cultured for 72 hours at 

37°C with 5% CO2 in a 96-well plate and 

then added 2 μg pure RpfE protein per well. 

The plates were then incubated for 4 hours 

with 20 μL of MTT (5 mg/mL, diluted with 

PBS, pH 7.2). Each well's supernatant was 

then replaced with 150 μL of DMSO before 

the absorbance was read at 490 nm after 10 

minutes of incubation. All experiments 

were done in triplicate and the stimulation 

index was calculated using wells that were 

not stimulated with pure RpfE protein. 

Purification of RpfE Protein: 

           Using a column chromatographic 

technique, the protein was extracted from 

total culture filtrate protein. Using 10 mM 

Tris HCl buffer containing 3% 

methylcellose, a DEAE–Sepharose CL-6B 

(anion exchange) packed gel was 

equilibrated. To allow the proteins to bind 

to the gel matrix, concentrated culture 

filtrate proteins dialyzed against Tris buffer 

were put onto the column and left at 4°C for 

30 minutes. To obtain maximal protein 

binding to the column and eliminate 

unattached protein from the gel, the column 

was rinsed three times with equilibrating 

buffer before being washed with the 

equilibrating buffer. To elute the bound 

protein from the column, a linear gradient 

of 50-300mM NaCl was utilized in the 

equilibrating buffer. The absorbance was 

measured using a spectrophotometer at 

280nm using equilibrating buffer as a blank. 

The pure protein was next concentrated 

using an Amicon unit with a 5kDa cut-off 

filter, and the Tris salt was removed 

overnight at 4°C by dialysis against PBS. 

The protein concentration of each pooled 

fraction was determined using the Bradford 

method, and the protein profile was 

examined using SDS-PAGE. 
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Cytokine Assay: 

            In 24-well plates, a total of 5x10 

splenocytes were grown per well. The 

supernatants from each well were taken 

after 48 hours of incubation and kept at -

20°C until testing. ELISA kits were used to 

detect interleukin-12 (IL-12), IL-10, and 

interferon-gamma (IFN- γ) in the culture 

supernatants using the standard curves 

made with known concentrations of 

recombinant rIL-12, rIL-10, and rIFN- γ. 

RESULTS  

 Expression and purification of RpfE 

protein  

           Before the 22-Kda protein was 

multieluted and tested for purity using 15% 

SDS-PAGE, culture filtrate proteins were 

purified using anion exchange 

chromatography (Fig. 1). 

 
Fig. 1. Expression and purification of RpfE on 15% SDS-PAGE gel and Western blot analysis. 

 
T Cell Proliferation: 

          The stimulation index (SI) of 

splenocytes was evaluated using the MTT 

technique to assess the cell-mediated 

immune response. RpfE and control groups 

had SI values of 3.49±0.10), and 1.35±0.04, 

respectively (Fig. 2). Splenocyte 

proliferation is driven by RpfE protein and 

PBS as a negative control). The stimulation 

index (SI) was computed by dividing the 

experimental group's OD490 values by the 

controls' values. 

 
Fig. 2. The proliferation of splenocytes induced by RpfE protein and PBS, used as a negative 

control. The stimulation index (SI) was determined by dividing the experimental group's OD490 

values by those of control group). The results are expressed as mean±SD, and all experiments 

were repeated three times. 
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Cytokine Production: 

             Indirect ELISA was used to 

determine the quantities of IFN-   γ , IL-10, 

and IL-12 secretion triggered by RpfE 

antigen, which was 1,568±4.5, 652±4 and 

552±39 pg/mL in the cultured supernatants 

of splenocytes, respectively, versus 27±2, 

27±2 and 8.88±2 pg/mL in the PBS group 

(Fig. 3). 

 
Fig. 3. Levels of IFN-γ (A), IL-10 (B) and IL-12 (C) induced in the culture supernatant of 

splenocytes challenged with purified Rpf protein and PBS used as a negative control. The 

results are expressed as mean± SD, and all experiments were repeated three times. 
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DISCUSSION 

             Resuscitation-promoting factor 

proteins (Rpfs) present in Mycobacterium 

tuberculosis can reactivate dormant 

mycobacterial growth (Kana and Mizrahi 

2010; Uhía et al., 2015). RpfE and RpfB 

interact with the cell wall hydrolase RipA, 

and RpfB and RipA colocalize near the 

septum of dividing cells, implying the 

central role of RpfB–RipA interactions 

during reactivation (Hett et al., 2008; Hett 

et al., 2010; Hett et al., 2007; Nikitushkin et 

al., 2015). Although the precise functions of 

all Rpfs are unknown, isolated RpfE 

stimulates dendritic cell maturation in an 

animal model (Choi et al., 2015). RpfE, 

along with RpfA and RpfC, is found in M. 

tuberculosis culture filtrates (De Souza et 

al., 2011; Målen et al., 2007), and 

positioned to perform autocrine and/or 

paracrine signalling roles. 

            In vitro, deletion of a single Rpf 

gene has no effect on cell growth or 

morphology, implying that these proteins 

are functionally redundant, as none of the 

members of the family are required for 

cultured cell growth (Kana et al., 2008; 

Tufariello et al., 2004). In vitro, deletions of 

three rpf genes resulted in cell growth 

abnormalities showing their functional 

relevance in Mtb (Kana et al., 2008). Mtb 

rpfB deletion mutants also fail to resuscitate 

in mice3, whereas rpfE is required for 

transitioning of mycobacterial cultures from 

slow to fast (Beste et al., 2009) suggesting 

the importance of RpfB and RpfE proteins 

(Kana and Mizrahi 2010). 

             The reciprocal stimulation of Th1 

and Th17 cellular responses is critical for 

the growth and development of adaptive 

immunity against tuberculosis (Griffiths et 

al., 2011). In general, a robust Th1 response 

mediated by IFN- γ secretion by antigen-

specific CD4+ T cells is central to immune 

response against Mtb infection; however, 

new research has highlighted the role of the 

Th17 response in immune elicitation 

against Mtb (Chatterjee et al., 2011; Gopal 

et al., 2012; Torrado and Cooper 2010). As 

a result, finding novel proteins that activate 

both Th1 and Th17 immune responses 

simultaneously is critical for the creation of 

effective vaccines. Both innate and adaptive 

immune responses, required to induce 

protective immunity against Mtb infection 

(Feng et al., 1999; Flesch and Kaufmann 

1990), are dependent upon dendritic cells 

(DCs) for antigen-presentation 

(Megiovanni et al., 2004). 

            Many Mtb antigens present within 

granulomas during Mtb infection stimulate 

DCs. DCs can lead to the 

immunopathological reaction (Suresh and 

Mosser 2013), however, these cells are also 

central to significantly heightened cellular 

immunological response to Mtb infection 

(Demangel and Britton 2000; Tascon et al., 

2000). DCS move to the draining lymphoid 

tissue throughout their maturation phase 

and prime both naive and memory T cells 

leading to the development of antigen-

specific T cells (Dumortier et al., 2005). 

The Th1 immune response plays a critical 

role in Mtb protection (Ottenhoff et al., 

1998) and despite inducing a strong Th1 

response, the BCG vaccine does not appear 

to give adequate protection against Mtb 

infection (Majlessi et al., 2006; Wozniak et 

al., 2010). 

           Th17 cells, in collaboration with Th1 

cells, play an important role in eliciting a 

protective immune response against 

pathogenic Mtb (Gopal et al., 2014). Thus 

an effective vaccine candidate must elicit 

significant Th17 cell responses in addition 

to Th1 cell responses (Gopal et al., 2014). 

However, few reports are available about 

antigens activating the Th17 cell response 

through vaccination. Given these findings, 

Mtb antigens that elicit both Th1 and Th17 

immune responses are promising targets for 

the creation of novel vaccines (Gowthaman 

et al., 2011). Moreover, an effective TB 

vaccine should cover targets associated 

with the initial infection as well as those 

associated with the reactivation of latent 

Mtb infection (Flynn and Chan 2001). 

           Resuscitation-promoting factors 

(Rpfs) have been recommended as excellent 

vaccination candidates among latency-
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associated components (Romano et al., 

2012). However, the immunological role of 

Rpf antigens as vaccine candidates remains 

to be studied. RpfE is a potent DC activator 

during the antigen-DC interaction, 

according to a recent study. As a result, the 

current study looked at the involvement of 

RpfE in the elicitation of immunological 

responses. In both humans and animals, the 

RpfE protein has been shown to trigger 

strong T-cell responses. 

             Secreted and surface-exposed cell 

wall proteins are key antigens culminating 

in the development of a protective immune 

response against M. tuberculosis. Early 

reports showed that immunization with 

whole-culture filtrate protected mice and 

guinea pigs against future tubercle bacilli 

challenges (Derrick et al., 2005; Kumar et 

al., 2016; Tanghe et al., 2001). Because 

RpfE is a secreted protein, the current study 

additionally looked at the cytokine 

production of splenocytes challenged with 

RpfE proteins in vitro. In animal models of 

tuberculosis, IFN- γ has been shown to be a 

protective cytokine (Smith et al., 2002) 

while IL-12 is required to develop a 

protective immune response against Mtb 

along with inducing IFN- γ expression and 

activation of antigen-specific lymphocytes 

(Cooper et al., 1997; Gazzinelli et al., 

1994). 

             Mycobacteria and other 

intracellular infections can activate IL-10, 

and illnesses caused by these organisms are 

usually linked to immunologic 

unresponsiveness and IFN- production 

failure (Gong et al., 1996; Rojas et al., 

1999). 

Conclusion 

            Purified RpfE protein induced 

considerable IFN- γ, IL-10, and IL-12 

cytokine production in splenocytes in vitro, 

indicating the significant activation of the 

cellular immune response. The potential of 

RpfE protein as a multiantigenic Mtb 

subunit vaccine candidate will be 

determined in future in-vivo investigations 

using immunized mice challenged with M. 

tuberculosis. 
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