

Egypt. Acad. J. Biolog. Sci., 13 (1):29 - 37 (2021)

Egyptian Academic Journal of Biological Sciences E. Medical Entom. & Parasitology ISSN: 2090 – 0783

www.eajbse.journals.ekb.eg

Larvicidal Activity of *Menthe longifolia* (Lamiaceae) Different Extracts against *Culex* pipiens L. and *Culex antennatus* Becker (Diptera: Culicidae)

Sayed A. Sayed, Kotb M. Hammad, Ahmed Z.I. Shehata and Mostafa M. Mokhtar Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt E-mail : <u>drmosta80@azhar.edu.eg</u>

ARTICLE INFO

Article History Received:18/4/2021 Accepted:2/6/2021

Keywords: Larvicidal, Culex pipiens, Culex antennatus, Menthe longifolia.

ABSTRACT

Larvicidal activity of Menthe longifolia different extracts against lymphatic filariasis vector, Culex pipiens and Rift Valley Fever vector, C. antennatus was tested. The extraction was carried out using methanol, acetone, chloroform and petroleum ether solvents. Obtained results revealed that petroleum ether extraction from leaves of M. longifolia was more effective against 3rd instar larvae of C. pipiens and C. antennatus than those of chloroform, acetone and methanol extractions. Methanol, acetone, chloroform and petroleum ether extracts from leaves of *M. longifolia* recorded LC₅₀ values of 1741.5, 1322.0, 702.4 and 379.5 ppm against C. pipiens third larval instar and 1064.6, 850.3, 459.9 and 250.4 ppm against C. antennatus third larval instar, respectively. In addition, LC₉₀ values recorded 2282.0, 1897.7, 1300.3 and 511.9 ppm by methanol, acetone, chloroform and petroleum ether extract from leaves of M. longifolia against C. pipiens third larval instar and 1596.5, 1388.6, 979.4 and 388.2 ppm against *C*. antennatus third larval instar, respectively. Also, both C. pipiens and C. antennatus larval and pupal periods were prolonged by all tested extracts at all concentrations used as compared with the untreated groups. Menthe longifolia tested extracts are considered as new promising controlling agents against C. pipiens and C. antennatus, however, more studies are necessary to reach the active ingredient in the tested extracts.

INTRODUCTION

Mosquitoes stand out most among the numerous species of blood-sucking arthropods that annoy humans. But what is more important, is their role in the transmission of many serious diseases (Morsy *et al.*, 1990). About 3500 species of mosquitoes are known all over the world and transmit diseases, such as malaria, filariasis and dengue causing millions of deaths every year (Stone, 1975; Shehata, 2018). *Culicine* mosquitoes in Egypt mainly, *Culex pipiens* has a wide distribution and it is the main vector of Rift Valley fever virus (Meagan *et al.*, 1980; Darwish and Hoogastrall, 1981), *Wuchereria bancrofti* (Khalil *et al.*, 1930; Gad *et al.*, 1996) and Western Nile virus (Pelah *et al.*, 2002). Another *Culicine* mosquito in Egypt, *Culex antennatus* is the main vector of Rift Valley Fever virus during an outbreak in the Nile Delta of Egypt (Hanafi *et al.*, 2011).

Immature stages of different mosquito species are usually targeted using synthetic chemical insecticides and microbial agents. Continues usage of synthetic chemical insecticides in mosquito control has resulted in lower efficacy of these insecticides and enhancing resistance in mosquito populations (Pates and Curtis, 2005; Nathan *et al.*, 2005) and thus increasing the demand for new products which are eco-friendly, targetspecific and degradable.

Plants are a rich source of control agents against mosquitoes because they possess bioactive chemicals, which act as insecticides and growth inhibitors, (Murugan *et al.*, 1996; Koul, 2005). In addition, botanical pesticides offer an advantage over synthetic pesticides as they can be much less toxic, less prone to the development of resistance and more easily degradable.

The wild mint, *Menthe longifolia* used in the present study is used in the pharmaceutical and food industries, as well as in cosmetology. Also, *M. longifolia* various parts, leaves, flower, stem, and seeds have been also used in traditional folk medicine as antimicrobial, carminative, stimulant, antispasmodic and for the treatment of various diseases such as headaches and digestive disorders (Mikaili *et al.*, 2013).

The current study aimed at investigating the activity of different extracts from leaves of *Menthe longifolia* against *Culex pipiens* and *Culex antennatus* larvae.

MATERIALS AND METHODS Colonization of Tested Mosquitoes:

Tested mosquitoes' larvae, *Culex pipiens* and *C. antennatus* were collected from Tamia Centre, Al-Fayyum Governorate, Egypt (29° 29' 26.097" N, 30° 58' 36.945" E) and reared for six generations in Mosquito insectary, Animal House, Faculty of Science, Al-Azhar University. The rearing procedure described by Shehata *et al.*, (2020) was applied to provide larvae needed for the assay. **Preparation of** *Menthe longifolia* **Tested Extracts:**

Leaves of Horsemint, *M. longifolia* (Lamiaceae) were collected from Dahab,

South Sinai Governorate, Egypt $(28^{\circ} 30')$ 32.8824" N, 34° 30' 49.0824" E) and allowed to dry at room temperature $(25\pm 3^{\circ}C)$. The extraction was performed using a procedure of Hassan *et al.*, (2014). The extraction was carried out using methanol, acetone, chloroform and petroleum ether solvents. Dry *M. longifolia* extracts were stored at -4°C until using.

Larvicidal Activity:

A standard larvicidal assay described by Hassanain *et al.*, (2019) was applied to study the larvicidal activity of the tested *M. longifolia* extracts with minor modifications. Briefly, tested material of the methanolic extracts was dissolved in 0.1ml of methanol, while tested materials of other extracts were dissolved in 2 drops of Tween₈₀.

Statistical Analysis:

All the statistical analyses were carried out using Statistical Package Social Science (SPSS) software version 11.5 (SPSS, 2007). Statistical analyses were conducted according to the method recorded by lentner *et al.*, (1982). LC₅₀ and LC₉₀ were calculated using multiple linear regressions (Finney, 1971). All data were recorded as Mean±SD.

RESULTS

The biological activity of methanol and acetone extracts from leaves of Menthe *longifolia* against the 3^{rd} instar larvae of C. pipiens is recorded in table 1. Complete larval mortality (100.0%) was achieved at the highest concentrations (2500 and 2000 ppm), meanwhile, the lowest mortality values (10.7 12.0%) occurred at the and lowest concentrations (1300 and 800 ppm) for both methanol and acetone extracts, respectively, compared with 2.7 and 2.3% for the control groups. The pupal mortality recorded 33.1, 23.7, 16.7 and 16.5% at 2300, 2100, 1900 and 1700 ppm of methanol extract, respectively, compared to 0.0% for the control group.

Generally, both mean larval and pupal periods were significantly prolonged at all concentrations used from two tested extracts as compared with control congers. A retarded effect on growth was observed, especially at the highest concentrations of methanol and (2300 and 1800 ppm), where the growth index

acetone extracts from leaves of *M. longifolia* recorded 6.4 and 7.9, compared with 11.9 and 11.8 for the untreated groups (Table 1).

Extract	Conc. (ppm)	Larval Mort. (%)	Pupal Mort. (%)	Adult Emergence (%)	Larval Period	Pupal Period	Developmental Period	Growth Index
	2500	100.0±0.0						
	2300	93.3±2.3	33.1±14.4	66.9±14.4	6.9±0.2 ^d	3.5±0.1°	10.4±0.3 ^d	6.4
	2100	80.0±6.9	23.7±6.4	76.3±6.4	6.7±0.2 ^c	3.4±0.2 ^b	10.1±0.4°	7.6
Methanol	1900	62.7±2.3	16.7±7.3	83.3±7.3	6.3±0.3 ^a	3.1±0.2 ^a	9.4±0.5 ^a	8.9
	1700	50.7±4.6	16.5±2.1	83.5±2.1	6.0±0.1ª	3.0±0.4 ^a	9.0±0.5 ^a	9.3
	1500	34.7±6.1	0.0	100.0±0.0	5.9±0.4 ^a	2.9±0.1ª	8.8±0.5 ^a	11.4
	1300	10.7±2.3	0.0	100.0±0.0	5.7±0.3ª	2.8±0.2 ^a	8.5±0.5 ^a	11.8
	Control	2.7±2.3	0.0	100.0±0.0	5.7±0.2 ^a	2.7±0.1ª	8.4±0.3ª	11.9
	2000	100.0±0.0						
	1800	84.0±4.0	12.0±2.0	88.0±2.0	7.4±0.1 ^d	3.7±0.4 ^d	11.1±0.5 ^d	7.9
	1600	62.7±2.3	9.0±3.5	91.0±3.5	7.2±0.3 ^d	3.6±0.1 ^d	10.8±0.4 ^d	8.4
Acetone	1400	54.7±3.5	0.0 ± 0.0	100.0±0.0	7.1±0.3 ^d	3.3±0.1 ^b	10.4±0.4 ^d	9.6
	1200	44.0±8.0	0.0 ± 0.0	100.0±0.0	6.8±0.2 ^d	3.1±0.2 ^a	9.9±0.4 ^d	10.1
	1000	30.7±2.3	0.0 ± 0.0	100.0±0.0	6.3±0.1 ^d	3.0±0.1ª	9.3±0.2°	10.8
	800	12.0±4.0	0.0 ± 0.0	100.0±0.0	6.0±0.1 ^d	2.8±0.3ª	8.8±0.4ª	11.4
	Control	2.3±1.3	0.0 ± 0.0	100.0±0.0	5.1±0.1 ^a	2.8±0.2ª	7.9±0.3ª	11.8

Table 1: Effect of methanol and acetone extracts from leaves of *Menthe longifolia* on some biological aspects of Culex pipiens.

No. of tested larvae = 25 per one replicate; Conc. = Concentration; ppm = particle per million; SD = standard deviation; mort. = mortality. Means followed by the same letter in the same column are not statistically significant (P>0.05)

In addition, complete larval mortality (100.0%) attained by chloroform and petroleum ether extracts from leaves of M. longifolia at the highest concentrations (1500 and 550 ppm), meanwhile, the lowest values (20.0 and 12.0 %) was occurred at the lowest concentrations (300 and 250 ppm) compared with 20.0% for the control group. Also, there was no effect of petroleum ether

extract from leaves of M. longifolia on C. pipiens pupae resulted from treated larvae. Both chloroform and petroleum ether extracts from leaves of M. longifolia induced a prolongation in larval and pupal periods as compared with untreated groups. The growth index recorded the lowest value (5.8) by 1300 ppm of chloroform extract from leaves of M. longifolia (Table 2).

Table 2: Effect of chloroform and petroleum ether extracts from leaves of Menthe longifolia on some biological aspects of *Culex pipiens*.

Extract	Conc. (ppm)	Larval Mort. (%)	Pupal Mort. (%)	Adult Emergence (%)	Larval Period	Pupal Period	Developmental Period	Growth Index
	1500	100.0±0.0						
	1300	90.7±2.3	35.5±3.9	64.5±3.9	7.2±0.4 ^d	3.9±0.2°	11.1±0.6 ^d	5.8
	1100	80.0±2.3	23.6±4.5	76.4±4.5	7.0±0.1 ^d	3.8±0.3 ^b	10.8±0.4 ^d	7.1
Chlonoform	900	62.7±4.6	17.8±3.2	82.2±3.2	6.9±0.2 ^d	3.6±0.1 ^a	10.5±0.3 ^d	7.8
Chioroform	700	52.0±4.0	14.2±2.2	85.7±2.2	6.7±0.2 ^d	3.5±0.1 ^a	10.2±0.3°	8.4
	500	37.3±2.3	0.0±0.0	100.0±0.0	6.6±0.2 ^d	3.2±0.3 ^a	9.8±0.5 ^b	10.2
	300	20.0±0.0	0.0±0.0	100.0±0.0	6.4±0.2 ^d	3.1±0.3 ^a	9.5±0.5ª	10.5
	Control	9.2±5.3	0.0±0.0	100.0±0.0	5.3±0.2 ^a	3.0±0.2 ^a	8.3±0.4ª	12.0
	550	100.0±0.0						
	500	82.7±4.6	0.0±0.0	100.0±0.0	7.8±0.1 ^d	4.3±0.2 ^d	12.1±0.3 ^d	8.3
	450	74.7±2.3	0.0±0.0	100.0±0.0	7.7±0.3 ^d	4.1±0.3 ^d	11.8±0.6 ^d	8.5
Pet. ether	400	64.0±4.0	0.0±0.0	100.0±0.0	7.6±0.3 ^d	4.0±0.1°	11.6±0.4 ^d	8.6
	350	38.7±2.3	0.0±0.0	100.0±0.0	7.3±0.2 ^d	3.9±0.1°	11.2±0.3 ^d	8.9
	300	21.3±2.3	0.0±0.0	100.0±0.0	7.1±0.1 ^d	3.7±0.3 ^b	10.8±0.4 ^d	9.3
	250	12.0±4.0	0.0±0.0	100.0±0.0	6.9±0.1 ^d	3.5±0.3ª	10.4±0.4 ^d	9.6
	Control	7.2±2.4	0.0±0.0	100.0±0.0	5.3±0.1 ^a	3.0±0.3ª	8.3±0.4ª	12.0

See the footnote of table 1.

On the other hand, Data presented in table 3 showed the biological activity of methanol and acetone extracts from leaves of *M. longifolia* against *C. antennatus* third larval instar. Complete larval mortality (100.0%) was caused at 1800 and 1600 ppm, meanwhile, the lowest values (10.7 and 9.3%) was occurred at the lowest concentrations (600 and 400 ppm), respectively, compared with 12.0 and 4.0 % for the control groups.

A prolongation in both larval and pupal periods as the result of tested extracts

was recorded. The growth index recorded 10.8, 11.1, 11.2, 11.6, 12.3 and 12.8 at 1600, 1400, 1200, 1000, 800 and 600 ppm of methanol extract from leaves of *M. longifolia*, respectively vs. 13.0 for the control group. Meanwhile, the growth index for *C. antennatus* larvae and pupae slightly affected by acetone extract of *M. longifolia* (leaves) at all concentrations used as compared with the control group (Table 3).

Table 3: Effect of methanol and acetone extracts from leaves of *Menthe longifolia* on some biological aspects of *Culex antennatus*.

01010	Sieur us			ennennsi				
Extract	Conc. (ppm)	Larval Mort. (%)	Pupal Mort. (%)	Adult Emergence (%)	Larval Period	Pupal Period	Developmental Period	Growth Index
Methanol	1800	100.0±0.0						
	1600	92.0±4.0	0.0 ± 0.0	100.0±0.0	6.0 ± 0.2^{d}	3.3±0.1 ^b	9.3±0.3 ^d	10.8
	1400	78.7±2.3	0.0 ± 0.0	100.0±0.0	5.8±0.1 ^d	3.2±0.3 ^a	9.0±0.4°	11.1
	1200	61.3±2.3	0.0 ± 0.0	100.0±0.0	5.7±0.1 ^d	3.2±0.2 ^a	8.9±0.3°	11.2
	1000	48.0±4.0	0.0 ± 0.0	100.0±0.0	5.5±0.3 ^b	3.1±0.1 ^a	8.6±0.4ª	11.6
	800	30.7±2.3	0.0 ± 0.0	100.0±0.0	5.1±0.1 ^a	3.0±0.1ª	8.1±0.2 ^a	12.3
	600	10.7±6.1	0.0 ± 0.0	100.0±0.0	5.0±0.2 ^a	2.8±0.2 ^a	7.8±0.4 ^a	12.8
	Control	12.0±4.0	0.0 ± 0.0	100.0±0.0	4.9±0.1 ^a	2.8±0.2 ^a	7.7±0.3ª	13.0
	1600	100.0±0.0						
	1400	93.3±2.3	0.0 ± 0.0	100.0±0.0	6.3±0.3 ^d	3.9±0.4 ^a	10.2±0.7°	9.8
	1200	76.0±4.0	0.0 ± 0.0	100.0±0.0	6.2±0.2 ^d	3.7±0.3 ^a	9.9±0.5°	10.1
Aastono	1000	64.0±4.0	0.0 ± 0.0	100.0±0.0	6.0±0.1 ^d	3.6±0.1ª	9.6±0.2 ^b	10.4
Acetone	800	52.0±4.0	0.0 ± 0.0	100.0±0.0	5.8±0.2°	3.6±0.2 ^a	9.4±0.4 ^a	10.6
	600	33.3±4.6	0.0±0.0	100.0±0.0	5.7±0.1 ^b	3.5±0.1ª	9.2±0.2ª	10.9
	400	9.3±2.3	0.0±0.0	100.0±0.0	5.4±0.1 ^a	3.3±0.3 ^a	8.7±0.4ª	11.5
	Control	4.0±0.0	0.0±0.0	100.0±0.0	5.1±0.1ª	3.2±0.2 ^a	8.3±0.3ª	12.0

See the footnote of table 1.

Data presented in table 4 recorded the activity of chloroform biological and petroleum ether extracts from leaves of M. *longifolia* against the 3^{rd} instar larvae of C. antennatus. Obtained data revealed that the highest concentrations (1200 and 450 ppm) caused complete larval mortality; meanwhile, the lowest concentration (100 and 150 ppm) caused larval mortality percentages of 17.3 and 14.7, respectively, compared with 10.7 and 8.0% for the control groups. In addition, booth larval and pupal periods were prolonged as compared with the untreated groups.

The chloroform extract from leaves of *M. longifolia* exhibited a very slight effect on the pupae resulted from treated larvae at 1000 and 800 ppm, where, the pupal mortality was 24.4 and 21.0%, respectively, compared with 0.0% for the control group. Also, the growth index recorded 7.0, 7.5, 9.7, 10.1, 10.3 and 11.2 at 1000, 800, 600, 400, 200 and 100 ppm of chloroform extract from leaves of *M. longifolia*, respectively, vs. 12.5 for the untreated group (Table 4).

Extract	Conc. (ppm)	Larval Mort. (%)	Pupal Mort. (%)	Adult Emergence (%)	Larval Period	Pupal Period	Developmental Period	Growth Index
	1200	100.0±0.0						
	1000	94.7±2.3	24.4±13.3	75.6±13.3	6.8 ± 0.2^{d}	4.0±0.4°	10.8 ± 0.6^{d}	7.0
	800	80.0±4.0	21.0±11.6	79.0±11.6	6.7±0.4 ^d	3.9±0.3 ^b	10.6±0.7 ^d	7.5
Chlonoform	600	66.7±2.3	0.0±0.0	100.0±0.0	6.4 ± 0.4^{d}	3.9±0.1 ^b	10.3±0.5 ^d	9.7
Chioroform	400	42.7±2.3	0.0±0.0	100.0 ± 0.0	6.1±0.1°	3.8±0.2 ^b	9.9±0.3°	10.1
	200	32.0±4.0	0.0±0.0	100.0±0.0	6.0±0.3°	3.7±0.1ª	9.7±0.4 ^b	10.3
	100	17.3±2.3	0.0±0.0	100.0±0.0	5.5±0.2 ^a	3.4±0.3ª	8.9±0.5 ^a	11.2
	Control	10.7±5.3	0.0±0.0	100.0±0.0	4.9±0.1 ^a	3.1±0.2 ^a	8.0±0.3 ^a	12.5
	450	100.0 ± 0.0						
	400	93.3±4.6	0.0±0.0	100.0 ± 0.0	7.2±0.1 ^d	4.2±0.2°	11.4±0.3 ^d	8.8
	350	84.0±4.0	0.0±0.0	100.0±0.0	7.0±0.1 ^d	4.1±0.3°	11.1±0.4 ^d	9.0
Dot other	300	73.3±2.3	0.0±0.0	100.0±0.0	6.9±0.1 ^d	3.9±0.3 ^b	10.8±0.4 ^d	9.3
Pet. etner	250	50.7±2.3	0.0±0.0	100.0±0.0	6.7±0.3 ^d	3.7±0.3ª	10.4±0.6°	9.6
	200	34.7±4.6	0.0±0.0	100.0±0.0	6.5±0.4 ^d	3.6±0.4ª	10.1±0.8°	9.9
	150	14.7±2.3	0.0±0.0	100.0±0.0	6.2±0.2 ^c	3.2±0.1ª	9.4±0.3 ^a	10.6
	Control	8.0±0.0	0.0 ± 0.0	100.0±0.0	5.2±0.3ª	3.1±0.2ª	8.3±0.5 ^a	12.0

Table 4: Effect of chloroform and petroleum ether extracts from leaves of *Menthe longifolia* on some biological aspects of *Culex antennatus*.

See the footnote of table 1.

Based on LC_{50} and LC_{90} values, petroleum ether extraction from leaves of *M. longifolia* was more effective against 3rd instar larvae of *C. pipiens* and *C. antennatus* than those of chloroform, acetone and methanol extractions (Table 5).

Table 5: Lethal concentrations (LC₅₀ and LC₉₀) of *Menthe longifolia* (leaves) tested extracts against *Culex pipiens* and *Culex antennatus* larvae.

Extract	Mosquito Specie	LC ₅₀ (LC ₉₀)	Slope	95% Confid LC ₅₀	γ ²		
	history and specie	ppm	Stope	Lower	Upper	~	
Methanol	Culex pipiens	1741.5 (2282.0)	0.074	1719.0 (2264.6)	1763.8 (2299.4)	2.6 ^{Ns}	
Acetone		1322.0 (1897.7)	0.0695	1303.2 (1883.2)	1340.8 (1912.2)	1.1 ^{Ns}	
Chloroform		702.4 (1300.3)	0.0669	677.2 (1291.4)	727.7 (1309.3)	1.5 ^{Ns}	
Pet. ether		379.5 (511.9)	0.302	368.3 (501.2)	390.8 (522.6)	2.9 ^{Ns}	
Methanol		1064.6 (1596.5)	0.0752	1046.4 (1578.9)	1082.9 (1614.1)	1.8 ^{Ns}	
Acetone	Culex antennatus	850.3 (1388.6)	0.0743	830.7 (1373.5)	869.9 (1403.7)	2.9 ^{Ns}	
Chloroform		459.9 (979.4)	0.077	442.9 (971.1)	477.0 (987.8)	2.4 ^{Ns}	
Pet. ether		250.4 (388.2)	0.2903	236.2 (372.5)	264.6 (403.8)	1.8 ^{Ns}	

 χ^2 Chi square value; Ns non-significant (P>0.05)

DISCUSSION

Lymphatic filariasis vector, *Culex pipiens* L. infects more than a hundred million people (Sayed *et al*, 2018; Shehata 2019). In addition, *C. antennatus* considered the main vector of Rift Valley Fever virus in the Nile Delta of Egypt. So, controlling *C. pipiens* and *C. antennatus* is a paramount technique for barring the propagation of diseases (Elango *et al*, 2009; Shahat *et al*, 2020).

The new materials of natural origin (plant extracts) revoke the hazards of synthetic chemical insecticides used in mosquito control, as some are selective, biodegrade to nontoxic products, and safe for non-target organisms, as well as the environment (Singh and Upadhyay, 1993; Isman, 2006; Pavela, 2007).

In the present study, biological aspects of *C. pipiens* and *C. antennatus* were clearly affected by methanol, acetone, chloroform and petroleum ether extracts from leaves of *Menthe longifolia*. The larvicidal activity of the tested plant extracts was varied according to the solvent used in the extraction and concentration of the extract. Generally, the obtained results indicated that petroleum ether extract from leaves of *M. longifolia* was the most effective extract against larvae of C. pipiens and C. antennatus as compared with those of chloroform, acetone and methanol. These results are inconsistent with the previous suggestions of Prabakar and jebanesan, (2004)where, Momordica Trichosanthes anguina, charantia, Luffa acutangula, Benincasa cerifera and Citrullus vulgaris extracts recorded LC50 values after 24 h against C. quinquefasciatus third larval instar equal to 465.85, 567.81, 839.81, 1189.30 and 1636.04 ppm and Coria et al, (2008) using extracts from Melia azedarach against Aeds aegypti. Similar results were also recorded by Ullah *et al*, (2018) where, LC_{50} and LC₉₀ values of Cassia fistula and Nicotiana tabacum extracts recorded 50.27, 203.99 and 17.77 and 206.49 ppm against larvae of C. quinquefasciatus, Hassanain et al, (2019) who used petroleum ether extract from leaves of Lantana camara against larvae of Anopheles Multicolor, where, the highest larval mortality (100.0%) achieved at 140 ppm, Shehata, (2019) where, petroleum ether extract from leaves of Prunus domestica and Rhamnus cathartica was more effective against C. pipiens (LC₅₀ 33.3 and 63.4 ppm) than chloroform (LC₅₀ 70.8 and 192.1 ppm) and methanolic extracts (LC₅₀ 132.7 and 273.5 ppm) and Shahat et al, (2020) where, hexane extract from leaves of Otostegia fruticosa was the most effective extract against C. pipiens larvae with LC_{50} and LC_{90} values equal to 126.27 and 236.84 ppm, respectively followed by chlorobenzene (242.14 and 501.17 ppm), ethyl acetate (578.07 and 856.29 ppm) and (653.00 and 1127.10 methanol ppm), respectively.

Also, tested extracts from leaves of *M*. longifolia induced a prolongation in both larval and pupal periods of both *C. pipiens* and *C. antennatus* depending on the solvent used in extraction and concentration of the extract. Generally, the highest concentrations from all tested extracts significantly (P<0.001) prolonged larval and pupal durations. These results are inconsistent with results recorded by Sharma *et al*, (2006a&b) using petroleum ether extract of *Artemisia annua* against *An*. *stephensi* and *C. quinquefasciatus* larvae,

Coria *et al*, (2008) using ethanolic extract of *Melia azedarach* leaves on *Ae. aegypti* larvae, Juliene *et al*, (2009) using *Moringa oleifera* lectin against *Aedes aegypti* larvae, Hassanain *et al*, (2019) using petroleum ether extract from leaves of *L. camara* against larvae of *An. Multicolor*, Shehata, (2019) using methanol, chloroform and petroleum ether extracts from leaves of *Pr. domestica* and *R. cathartica* against *C. pipiens* and Shahat *et al*, (2020) using hexane extract from leaves of *O. fruticosa* against *C. pipiens* larvae.

On the other hand, a decrease in the percentage of C. pipiens and C. antennatus adult emergence due to treatment with tested extracts especially at the highest concentrations were recorded except petroleum ether extract from leaves of M. longifolia against C. pipiens, methanol extract from leaves of M. longifolia against C. antennatus and acetone extract from leaves of M. longifolia against C. antennatus. The reduction in the adult emergence percentages was similar to that recorded previously by Nathan et al, (2006) using methanolic extracts of leaves and seeds of Melia azedarach against A. stephensi larvae, Sharma et al, (2006a) using petroleum ether extract of Ar. against An. stephensi annua and С. quinquefasciatus larvae, Asiry et al, (2017) using ethanolic leaf extracts of Citrullus colocynthis, Artemisia annua, Pergularia Rhanterium tomentosa and epapposum against the larval stages of Ae. Aegypti, and Shehata, (2019) using methanol, chloroform and petroleum ether extracts from leaves of Pr. domestica and R. cathartica against C. pipiens larvae.

The growth index of C. pipiens and C. antennatus was decreased as the concentration of the tested extract increased. Such results are in agreement with earlier studies using different plant extracts against some dipteran species by Sharma et al, (2006b) using Artemisia extract against annua С. autnauetesctetus, Bream et al, (2010) using Echinochloa stagninum extracts against C. pipiens, Hassanain et al, (2019) using petroleum ether extract from leaves of L. camara against larvae of An. Multicolor and

Shahat et al, (2020) using hexane extract from leaves of O. fruticosa against C. pipiens. **Conclusion:**

All tested extracts from leaves of Menthe longifolia showed larvicidal activity against Culex pipiens and C. antennatus and are considered as new promising controlling agents against C. pipiens and C. antennatus, however, more studies are necessary to reach the active ingredient in the tested extracts.

REFERENCES

- Asiry, K. A.; Hassan, S. S. M.; Ibrahim, N. A.; Al- Khuraiji, I. A.; Kehial, M. A.; Al-Anazi, N. A.; Al-nasser, A. S. and Al-Shehri, A. Z. (2017): Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region. northern Saudi Arabia. against the dengue fever vector, Aedes aegypti (L.) under laboratory mosquito research, 4(3): 81.
- Bream, AS, El-Sheikh, TM, Fouda, MA, Hassan, MI, 2010: Larvicidal and repellent activity of extracts derived from aquatic plant Echinochloa stagninum against Culex pipiens. Tunisian Journal of Plant Protection, 5:107-123.
- Coria. C. Almiron, W. Valladares, G. Carpinella, C, Luduen^a, F, Defago, M, Palacios, S, 2008: Larvicide and oviposition deterrent effects of fruit leaf extracts from Melia and azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresource Technology, 99:3066-3070.
- Darwish. Hoogstraal, 1981: M, H. Arboviruses infesting human and lower animals in Egypt. A review of thirty years of research. Journal of Egyptian Public Health the Association, 56: 1-112.
- Elango, G, Abdul Rahuman, A, Bagavan, A, Kamaraj, C, Abduz Zahir, A, Venkatesan, C, 2009: Laboratory on larvicidal activity of study indigenous plant extracts against subpictus and Culex Anopheles

tritaeniorhynchus.). Parasitology Research, 104:1381-1388.

- Finney, DJ, 1971: Probit analysis Third edition. Cambridge Univ. Press., 333p.
- Gad, AM, Hammad, RE, Farid, HA, 1996: and development Uptake of Wucheria bancrofti in C. pipiens L. and Ae. caspius Pallas. Journal of Egyptian Society of Parasitology, 26(2):305-314.
- Hanafi, HA, Fryauff, DJ, Saad, MD, Soliman, AK, Mohareb, EW, et al, 2011: Virus isolations and high population density implicate Culex antennatus (Becker) (Diptera: Culicidae) as a vector of Rift Valley Fever virus during an outbreak in the Nile Delta of Egypt. Acta Tropica, 119(2/3):119-124.
- conditions. International journal of Hassan, MI, Fouda MA, Hammad, KM, Tanani, MA, Shehata, AZ, 2014: Repellent Effect of Lagenaria siceraria Extracts against Culex pipiens. Journal of Egyptian Society of Parasitology, 44(1): 243-248. doi: 10.12816/0006464.
 - Hassanain, NAH, Shehata, AZ, Mokhtar, MM, Shaapan, RM, Hassanain, MAH, Zaky, S, 2019: Comparison between insecticidal activity of Lantana camara extract and its synthesized nanoparticles against mosquitoes. anopheline Pakistan Journal of Biological Sciences, 22:327-334.
 - MB, 2006: Botanical insecticides, Isman. deterrent, and repellent in modern agriculture and increasingly regulated world. Annul Review of Entomology, 51:45-66.
 - Juliene, SC, Nataly DLS, Thiago, HN, Francis, SG, Rodrigo, SF, Russolina, BZ, Luana, CBBC, Sônia, PL, Daniela, MAFN, Patricia, MGP, 2009: Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere, 77: 934-938.

- Khalil, M, Malawani, A, Hilmi, IS, 1930: The transmission of *Bancroftian filariasis* in Egypt. *Journal of the Egyptian Medical Association*, 15: 315-332.
- Koul, O, 2005: Insect Antifeedants. CRC Press, Boca Raton, FL.
- Lentner, C, Lentner, C, Wink, A, 1982: Students t- distribution tables. In Geigy scientific Tables Vol. 2. International Medical and Pharmaceutical information, Ciba-Geigy Limited, Basal, Switzerland.
- Meagan, JM, Khalil, GM, Hoogstraal, H, Adham, FK 1980: Experimental transmission and field isolation studies implicating *C. pipiens* as a vector of Rift Valley virus in Egypt. *American Journal of Tropical Medicine and Hygiene*, 80: 1405-1410.
- Mikaili, P, Mojaverrostami, S, Moloudizargari, M, Aghajanshakeri, 2013: Pharmacological and S. effects of therapeutic Mentha and its Longifolia L. main constituent, menthol. Ancient science of life, 33(2):131-138. doi: 10.4103/0257-7941.139059
- Morsy, TA, El Okbi, LMA, Kamal, AM, Ahmed, MM, Boshra, EF, 1990: Mosquitoes of the genus Culex in the Suez Canal governorate, Egypt. Journal of Egyptian Society of Parasitology, 11 (2):441-451.
- Murugan, TS, Babu, R, Jeyabalan, D, Senthil Kumar, N Sivaramkrishnan, S, 1996: Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of *A. stephensi* (Liston). *Journal of Entomology Research*, 20: 137-139.
- Nathan, SS, Kalaivani, K, Murugan, K, 2005: Effects of neem limonoids on the malaria vector A. stephensi Liston (Diptera: Culicidae). Acta Tropica, 96(1):47-55.
- Nathan, SS, Savitha, G, George, DK, Narmadha, A, Suganya, L, Chung, PG, 2006: Efficacy of *Melia azedarach* L. extract on the malarial

vector *A. stephensi* Liston (Diptera: Culicidae). *Bioresource Technology*, 79:1316-1323.

- Pates H, Curtis C, 2005: Mosquito behavior and vector control. *Annul Review of Entomology*, 50: 53-70.doi: 10.1146/annurev.ento.50.071803.13 0439. PMID: 15355233.
- Pavela, R, 2007: Larvicidal effects of various Euro-Asiatic plants against C. quinquefasciatus say larvae (Diptera: Culicidae). Parasitology Research, 36:821-823.
- Pelah, D, Abramovich, Z, Markus, A, Wiesman, Z, 2002: The use of commercial saponin from *Quillaje* saponaria bark as a natural larvicidal agent against Ae. aegypti and C. pipiens. Journal of Ethnopharmacology, 81(3):407-409.
- Prabakar, K, Jebanesan, A, 2004: Larvicidal efficacy of some Cucurbitacious plant leaf extracts against *C. quinquefasciatus* (Say). *Bioresource Technology*, 95(1):113-114.
- Sayed, RM, Abdalla, RS, Rizk, SA, El sayed, TS, 2018: Control of *Culex pipiens* (Diptera: Culicidae), the vector of lymphatic filariasis, using irradiated and non-irradiated entomopathogenic nematode, *Steinernema scapterisci* (Rhabditida: Steinernematidae). *Egyptian Journal* of Biological Pest Control, 28:67. https://doi.org/10.1186/s41938-018-0070-z
- Shahat, MAM, El-Sheikh, TMY, Hammad, KM, Hasaballah, AI, and Shehata, AZI, 2020: Activity of Otostegia fruticosa (Lamiaceae) leaves extracts against lymphatic filariasis vector, Culex pipiens L. (Diptera: Culicidae). Egyptian Academic Journal of Biological Science A. Entomology, Vol. 13(4):175-186.
- Sharma, P, Mohan, L, Srivastava, CN, 2006a: Phytoextract-induced developmental deformities in malaria vector. *Bioresource Technology*, 97:1599-1604.

- Sharma, P, Mohan, L, Srivastava, CN, 2006b: Growth Inhibitory Nature of Artemisia annua Extract against Culex autnauetesctetus (Say). Journal of Asian-Pacific Entomology, 9(4):389395.
- Shehata, AZ, El-Sheikh, TM, Shaapan, RM, Abdel-Shafy, S, and Alanazi, AD, 2020: Ovicidal and latent effects of *Pulicaria jaubertii* (Asteraceae) leaf extracts on *Aedes aegypti. Journal of* the American Mosquito Control Association, 36(3):161-166.
- Shehata, AZI, 2018: Repellent Activity of Deverra triradiata (Apiaceae) extracts against Anopheles sergentii Theobald, Culex pipiens Liston and Culex antennatus Becker mosquitoes. Journal of Egyptian Society of Parasitology 48(3):599-604.
- Shehata, AZI, 2019: Biological activity of *Prunus domestica* (Rosaceae) and *Rhamnus cathartica* (Rhamnaceae) leaves extracts against the mosquito

vector, *Culex pipiens* L. (Diptera: Culicidae). *Egyptian Academic Journal of Biological Science F. Toxicology & Pest control*, 11(1):65-73.

- Singh, G, Upadhyay, RK, 1993: Essential oils a potent source of natural pesticides. *Journal of Scientific and Industrial Research*, 52: 676-683.
- SPSS, 2007: SPSS for windows. Version 11.5. SPSS, Chicago, IL.
- Stone, A, 1975: A synoptic catalog of the mosquitoes of the world. Supp 3. American Entomology Society Washington DC.
- Ullah, Z, Ijaz, A, Mughal, TK, Zia, K, 2018: Larvicidal activity of medicinal plant extracts against *Culex quinquefasciatus* Say. (Culicidae, Diptera). *International Journal of Mosquito Research*, 5(2):47-51.
- Vatandoost, H, 2001: Irritability level of Anopheles sephensi in Iran, 2001. Iranian Journal of Public Health, 30(1):27-30.